Omitir los comandos de cinta
Saltar al contenido principal
Inicio de sesión
Universidad EAFIT
Carrera 49 # 7 sur -50 Medellín Antioquia Colombia
Carrera 12 # 96-23, oficina 304 Bogotá Cundinamarca Colombia
(57)(4) 2619500 contacto@eafit.edu.co

Trabajos académicos

​​​​Proyectos e investigaciones desarrollados por los estudiantes durante su estancia en el doctorado. 

Leandro Fabio Ariza Jiménez​​


Ver CVLac



Descripción personal breve 

Leandro Fabio Ariza Jiménez se graduó como Ingeniero Electrónico de la Universidad Industrial de Santander en 2006, y como Magíster en Matemáticas Aplicadas de la Universidad EAFIT en 2014. Actualmente es estudiante del Doctorado en Ingeniería Matemática de la Universidad EAFIT desde el año 2016. Desde el año 2007 al 2015, ha participado en varios proyectos de investigación relacionados con el análisis de imágenes biomédicas en diferentes universidades. Durante este tiempo, también ha estado involucrado en la enseñanza de cursos de pregrado de métodos numéricos, álgebra lineal, análisis de Fourier, y procesamiento digital de imágenes. Desde el año 2016, está vinculado al "Centro de Excelencia y apropiación en Big Data y Data Analytics – Alianza CAOBA" como investigador de posgrado.

Áreas de interés e investigación:

  • Análisis de redes, detección de comunidades en redes complejas, aprendizaje de máquina, análisis de clústeres, métodos de reducción de dimensionalidad, algoritmos de visualización de datos, y procesamiento digital de imágenes.

Director: Olga Lucía Quintero Montoya, Nicolás Pinel Peláez

Grupo de investigación: Modelado matemático

Publicaciones científicas más relevantes

Leandro Ariza-Jiménez, O. L. Quintero and Nicolás Pinel, "Unsupervised fuzzy binning of metagenomic sequence fragments on three-dimensional Barnes-Hut t-Stochastic Neighbor Embeddings". Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 1315-1318. ISSN:1557-170X.

URL: https://ieeexplore.ieee.org/document/8512529


Andrés Cardona, Leandro Ariza-Jiménez, Diego Uribe, Johanna C. Arroyave, and July Galeano, Fabian M. Cortés-Mancera. "Bio-EdIP: An automatic approach for in vitro cell confluence images quantification". Computer Methods and Programs in Biomedicine, Vol. 145, p. 23-33, 2017. ISSN 0169-2607.

URL: https://www.sciencedirect.com/science/article/pii/S0169260716308598

 

L. Ariza-Jiménez, J.C. Gallego-Gómez, y J.C. Cardona. "Imagenología celular y máquina de aprendizaje para evaluar la distribución subcelular de mitocondrias en células infectadas con dengue". Biomédica: Revista del Instituto Nacional de Salud. Vol. 35(Sup.1), p. 28, 2015. ISSN: 0120-4157.

URL: https://www.revistabiomedica.org/index.php/biomedica/article/view/2857/2713

 

Juan Carlos Cardona-Gomez, Leandro Fabio Ariza-Jimenez and Juan Carlos Gallego-Gomez. "A Proposal for a Machine Learning Classifier for Viral Infection in Living Cells based on Mitochondrial Distribution". En Cell Biology. Editorial: InTech, 2015. ISBN: 978-953-51-4322-2.

URL: https://www.intechopen.com/books/cell-biology-new-insights/a-proposal-for-a-machine-learning-classifier-for-viral-infection-in-living-cells-based-on-mitochondr

 

A. Cardona, L. Ariza-Jiménez, D. Uribe, J. Arroyave, y F. Cortés-Mancera. "Automatic Image Segmentation Method for in vitro Wound Healing Assay Quantitative Analysis". En IFMBE Proceedings, Vol. 49, 2014. ISSN: 1680-0737.

URL: https://link.springer.com/chapter/10.1007/978-3-319-13117-7_98


Seminarios dictados : 

  • A network analysis approach for metagenomic binning.

Abstract: Metagenomics is the application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments. In metagenomics, the assignment of genomic fragments to the corresponding taxonomic group, e.g. species, genera or higher taxonomic groups, is commonly referred to as "binning", a procedure wherein each of the sequences is placed into an imaginary bin representing ideally only fragments belonging to this group. Since this is essentially a data clustering problem, here we attempt to develop and implement unsupervised strategies to address such problem. In particular, in this talk we will present the progress made by following a novel approach for the binning of genomic fragments based on similarity networks and community detection algorithms.

URL: https://youtu.be/TVEgN5NUXEI


  • Similarity-based clustering using a network analysis approach

Abstract: Networks represent relations between objects connected pairwise. Networks can have community structure, that is, objects interacting in a network can be organized into groups called communities. In addition, objects forming a community probably share some common properties as well as play similar roles within the interacting phenomenon that is being represented by the network. Thus, community detection can provide an insight into the structure of the networks.  Evident interactions between entities are often represented as networks, such as a social network of friendships between individuals or a network of citations between scientific papers. However, networks can be also used to represent similarity relationships between objects. Then, when it comes to cluster objects based on the above criteria, this problem could be solved by means of network community detection algorithms, rather than follow a cluster analysis approach.  In this talk we expose an alternative approach for data clustering based on network community detection algorithms. Details about the implementation and performance of this approach are given. In addition, this approach is exemplified by applying it in the identification and delimiting of microbial genomic populations.

URL: http://envivo.eafit.edu.co/EnvivoEafit/?p=27326

 

  • Transfer Learning on an Autoencoder- based Deep Network

Abstract: It is widely known that deep neural networks can be difficult to train in practice, since in order to obtain state-of-the-art results we need a great amount of data and computing power. However, we can overcome this issue either using autoencoders as way to "pre-train" deep neural networks or following a "transfer learning" approach. In particular, here we carried out several experiments to study how both approaches can benefit the training of deep networks.

URL: http://envivo.eafit.edu.co/EnvivoEafit/?p=26235

 

  • On the relation between Big Data and Machine Learning

Abstract: Recently the term "Big Data" was coined to capture the meaning of a data-explosion trend from diverse sources and domains, which society has been exposed due to technological advances since the second half of the 20th century. Machine Learning (ML) is a sophisticated analytical technology that can be used to provide us with intelligent analysis of Big Data. In this talk the relation between Big Data and ML is discussed, and two approaches of ML are presented: Clustering, and Deep Learning. The fundamental concepts of, and problems with Clustering will be discussed, followed by a description of some traditional algorithms and the presentation of experimental results in artificial datasets. With regard to Deep Learning, an introduction is given and future work in relation with big data is described.

URL: http://envivo.eafit.edu.co/EnvivoEafit/?p=25698

Trabajos

On the relation between big data and machine learning

Recently the term “Big Data” was coined to capture the meaning of a data-explosion trend from diverse sources and domains, which society has been exposed due to technological advances since the second half of the 20th century. Machine Learning (ML) is a sophisticated analytical technology that can be used to provide us with intelligent analysis of Big Data. In this talk the relation between Big Data and ML is discussed, and two approaches of ML are presented: Clustering, and Deep Learning. The fundamental concepts of, and problems with Clustering will be discussed, followed by a description of some traditional algorithms and the presentation of experimental results in artificial datasets. With regard to Deep Learning, an introduction is given and future work in relation with big data is described.


Transfer learning on an Autoencoder-based Deep Network

It is widely known that deep neural networks can be difficult to train in practice, since in order to obtain state-of-the-art results we need a great amount of data and computing power. However, we can overcome this issue either using autoencoders as way to “pre-train” deep neural networks or following a “transfer learning” approach. In particular, here we carried out several experiments to study how both approaches can benefit the training of deep networks.

​​​

Juan Guillermo Paniagua Castrillón


Ver CVLac




Improving the seismic image in reverse time migration by analyzing of wavefields and post processing the zero lag cross correlation imaging condition​

​Autor: ​Juan Guillermo Paniagua Castrillón. 

Research project with Ecopetrol and Colciencias: develop algorithms of seismic migration using wave field extrapolation in the direction of time (RTM, Reverse Time Migration), evaluating the preservation of amplitudes and frequencies as well as the conditions of stability, numerical dispersion and computational cost.

An approach to the study of time, time-frequency and time-scale transformations for seismic migration problems

Autor: ​Juan Guillermo Paniagua Castrillón. 
Research project with Ecopetrol and Colciencias: seismic pre-stack migration in depth by extrapolating wave fields using high performance computing for massive data in complex areas.

Laguerre Gaussian filters in Reverse Time Migration image reconstruction ​

Autor: ​Juan Guillermo Paniagua Castrillón. 

Reverse Time Migration (RTM) solves the acoustic or elastic wave equation by means of the extrapolation from source and receiver wavefield in time. A migrated image is obtained by applying some criteria known as imaging condition. The zero lag cross-correlation between source and receiver wavefields is the commonly used imaging condition. However, this imaging condition produces lowspatial-frequency noise or artifacts, due to the strong contrasts in velocity field (Pestana et al., 2014). Several imaging techniques have been proposed to reduce the artifacts occurrence. Derivative operators as Laplacian are the most frequently used. In this work, we propose the usage of a technique based on a spiral phase filter ranging from 0 to 2π​, and a toroidal amplitude bandpass filter, known as Laguerre-Gauss transform. Through numerical experiments we present the application of this particular filter on Seg Eage salt model and Sigsbee 2A model. We also present evidences that this method improves RTM images by reducing the artifacts and notably enhance the reflective events.

​​​​​​



Hector Roman Quiceno Echavarría


Ver CVLac



Riemannian wave-field extrapolation: thesis proposal

  • ​​​Autor: Hector Roman Quiceno E. ​

    ​​The earth is at least a visco elastic medium, in which absorption losses give rise to attenuation and dispersion effects. The elastic wave equation is framed in terms of tensor operators acting on vector quantities. It is also true that a proper treatment of anisotropy fundamentally demands an elastic viewpoint, even when only P-waves (quasi-P waves) are contemplated. Different representations for the same physical law can lead to different computational techniques in solving the same problem, which can produce different and new numerical results, so this new but accurate representation should lead us to new results and descriptions of the phenomena.​

     ​​
​​​

Diana Paola Lizaralde Bejarano


Ver CVLac





​​​

Juan David Palacio Dominguez


Ver CVLac




Descripción personal breve

Soy Ingeniero Industrial de la Universidad de Antioquia, Medellín y magister en ingeniería industrial de la Universidad de los Andes, Bogotá. Actualmente,  soy estudiante de doctorado en ingeniería matemática en EAFIT. Mi experiencia docente incluye más de seis años en la Universidad de los Andes, la Universidad de Antioquia, el Instituto Tecnológico Metropolitano -ITM y EAFIT. He asistido a varias conferencias nacionales e internacionales en investigación operativa y optimización. He estado involucrado en proyectos de investigación relacionados con problemas de selección y programación de proyectos, modelos de planificación de personal y optimización de ruteo de vehículos. Parte de mi investigación apareció recientemente en International Transactions in Operational Research y en la serie Communication in Computer and Information Science. Mis intereses de investigación actuales incluyen programación matemática y diseño de heurísticas para problemas de ruteo de vehículos.


Áreas de interés e investigación:

  • Optimización combinatoria, programación matemática y heurística.
  • Combinatorial optimization, mathematical programming and heuristics.

Director: Juan Carlos Rivera Agudelo

Grupo de investigación: Modelado matemático

Revistas a las que frecuentemente lee:

  • Computers and operations research
  • European Journal of Operational Research
  • Expert Systems with Applications
  • International Transactions in Operational Research
  • Computers and Industrial Enginnering
  • Annals of Operations Research

Publicaciones científicas más relevantes

Cortés, S., Gutiérrez, E. V., Palacio, J. D., & Villegas, J. G. (2018, October). Districting Decisions in Home Health Care Services: Modeling and Case Study. In International Workshop on Experimental and Efficient Algorithms (pp. 73-84). Springer, Cham.

Posada, A., Rivera, J. C., & Palacio, J. D. (2018). A Mixed-Integer Linear Programming Model for a Selective Vehicle Routing Problem. In International Workshop on Experimental and Efficient Algorithms (pp. 108-119). Springer, Cham.

Palacio, J. D., Larrea, O. L. (2017), A lexicographic approach to the robust resource-constrained project scheduling problem. International Transactions in Operational Research, 24: 143–157. doi:10.1111/itor.12301.

Gutiérrez, V., Palacio, J.D., Villegas, J.G. (2007), Reseña del software disponible en Colombia para el diseño de rutas de distribución y servicios. Revista Universidad EAFIT. 43, No.145 (ene-feb-mar.2007); p. 60-80. ISSN: 0120-341x.

Seminarios dictados : 

Otras Redes


​​​

Andres Giovanni Perez Coronado


Ver CVLac




​​​

Andres Yarce Botero


Ver CVLac




Descripción personal breve 

Soy estudiante del segundo año del Doctorado en Ingenieria Matematica de la Universidad EAFIT y de la Universidad TUDelft en los Paises Bajos. Estoy interesado en utilizar técnicas matemáticas junto a modelos de química y transporte atmosférico para simular, de la manera más apropiada, fenómenos con consecuencias perjudiciales para el medio ambiente, como la deposición de contaminantes que son emitidos por nosotros, humanos, desde centros urbanos y agrícolas. El deporte que más me gusta es el boxeo, la comida que más me gusta es la hamburguesa.

Áreas de interés e investigación:

  •  Asimilación de datos. 
  • Reducción de orden de modelos dinámicos. 
  • Radio definido por software
  • Satelites de pequeño formato

Directores:  Arnold Heemink (TUDELFT) Nicolas Pinel (EAFIT) Olga Lucia Quintero (EAFIT)

Grupo de investigación:  Modelado Matematico GRIMMAT, Biología Evolucion y Conservacion BEC, Mecanica Aplicada 

Revistas a las que frecuentemente lee:

Publicaciones científicas más relevantes

MARCO ALUNNO, ANDRES YARCE BOTERO, "Directional Landscapes: Using Parametric Loudspeakers for Sound Reproduction in Art" . En: Inglaterra 
Journal Of New Music Research  ISSN: 0929-8215  ed: 
v.fasc.N/A p.1 - 11 ,2016,  DOI: http://dx.doi.org/10.1080/09298215.2016.1227340


ANDRES YARCE BOTERO, JUAN SEBASTIAN RODRIGUEZ, JULIAN GALVEZ, ALEJANDRO GOMEZ "Simple-1: Development stage of the data transmission system for a solid propellant midpower rocket model" . En: Estados Unidos 
Journal Of Physics: Conference Series  ISSN: 1742-6596  ed: IOP Publishing Ltd
v.850 fasc.N/A p.12 - 19 ,2017,  DOI: doi :10.1088/1742-6596/850/1/012019


ANDRES YARCE BOTERO, JUAN SEBASTIAN RODRIGUEZ, JULIAN GALVEZ, ALEJANDRO GOMEZ "Design, construction and testing of a data transmission system for a mid-power rocket model" . En: Estados Unidos 
Ieee Aerospace Conference Proceedings  ISSN: 1095-323X  ed: 
v.2017 fasc.N/A p.1 - 14 ,2017,  DOI: 10.1109/AERO.2017.7943739


Seminarios dictados : 

Otras Redes




Santiago Lopez Restrepo


Ver CVLac




​​​

Jhon Willington Bernal Vera


Ver CVLac



Descripción personal breve 

Futuro Doctor en Ingeniería Matemática. Docente de matemáticas EAFIT. Youtuber en proceso.

Áreas de interés e investigación:

  • Geometría y topología.

Directores:  Dr. Carlos Cadavid

Grupo de investigación:  Matemáticas y Aplicaciones 

Seminarios dictados : 

​​​



Juan Carlos Arango Parra


Ver CVLac



Descripción personal breve 

Me considero una persona respetuosa, me gusta la puntualidad, los viajes. Me gusta compartir con mi familia (hija y esposa). Aprovecho al tiempo al máximo en las diferentes actividades laborales y académicas, pero también disfruto ver anime, series y películas.

Áreas de interés e investigación:

Geometría Diferencial, Análisis matemático, Ecuación del Calor, Machine Learning.

Director: Carlos Alberto Cadavid Moreno.

Codirector: Gabriel Ignacio Loaiza Ossa.

Grupo de investigación:  Análisis funcional y aplicaciones.

Revistas a las que frecuentemente lee:

  • Journal of Mathematics Analysis and Applications.
  • Entropy.
  • Differential Geometry and its Applications.
  • Journal of Machine Learning.
  • Applied Mathematics.

Publicaciones científicas más relevantes

Quiceno, Héctor, Loaiza, Gabriel and Arango, Juan. A Riemannian Geometry in the $q$-Exponential Banach Manifold Induced by $q$-Divergences. Capítulo 5 del libro Geometric Theory of Information. Springer, Signals and Communications Technology, 2014. DOI 10.1007/978-3-319-05317-2


 Quiceno, Héctor y Arango, Juan. A statistical manifold modeled on Orlicz spaces using Kaniadakis $\kappa$-exponential models. Journal of Mathematics Analysis and Applications, volumen 432, 2015, páginas 1080-1098.  DOI: http://dx.doi.org/10.1016/j.jmaa.2015.05.065


 Arango, Juan; Quiceno, Héctor y Plata, Osiris. Secciones cónicas $\kappa$-deformadas. Ingeniería y Ciencia, volumen 12, número 24, páginas 9-29, julio-diciembre de 2016. DOI: doi:10.17230/ingciencia.12.24.1.

Seminarios dictados : 

Otras Redes

​​​



Jhon Edilson Hinestroza


Ver CVLac



Descripción personal breve 

Me encanta la academia y saber que desde ella se pueden generar las transformaciones que el país requiere. La educación es el camino para que Colombia pueda dar a sus ciudadanos lo que tanto requieren. Pertenezco a ese grupo de colombianos que tuvieron la fortuna de nacer en el Chocó, con lo que trae eso, la oportunidad de despertar y ver la majestuosidad de su hermosa selva y la dulzura de sus ríos.

Soy un enamorado de mi familia, de mi esposa que me sostiene, mis hijas que me inspiran y mis padres que fueron el combustible para intentarlo cada vez, una vez y otra vez.

Áreas de interés e investigación:

  • Reducción de incertidumbre.
  • Análisis de sensibilidad.
  • Control estadístico de la calidad.

Director: Olga Lucía Quintero Montoya.

Codirector: Ángela María Rendón Pérez

Grupo de investigación:  Grupo de Investigación en Modelado Matemático, GRIMMAT.

Seminarios dictados : 

Otras Redes

​​​




Jorge Eliecer Agudelo Quiceno


Ver CVLac




​​​






















​​​


Última modificación: 27/05/2019 11:09